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Abstract

The scalar and vector potentials of a magnetic multipole
device are described in terms of magnetic field measure-
ments gathered on either a cylindrical surface or a median
plane [1]. Fringe field effects and multipole contributions
of arbitrary order, as well as the discrete nature of the field
measurements, are taken into account. This description has
been used to calculate the transfer function of the device,
directly in terms of the field measurements. The method as
described in this paper can be applied to single beam guid-
ing elements as well as to clusters of elements, and can be
extended to calculate the transfer function for a complete
beam line setup or a storage ring. The accuracy of the re-
sults is only limited by the accuracy of the field measure-
ments.

1 INTRODUCTION

From Maxwell’s equations for the static electromagnetic
field, we find that, for a magnetic field~B in a region with-
out free charges or currents, there exists a scalar potential
u, and a vector potential~A, satisfying:

gradu = ~B = curl ~A; (1)

�u = 0; (2)

curl curl ~A = ~0: (3)

The vector potential~A will be chosen such thatdiv ~A = 0.
In this case, we have� ~A = ~0.

We apply these equations to the magnetic field inside a
magnetic multipole device which has thez-axis as its cen-
tral axis. Our region of interestG is, in cilindrical coordi-
nates, given by:G : 0 � r < R; �� � ' � �; �1 <
z < 1, with boundary� : r = R. Here,R > 0 is a con-
venient maximal radius of the multipole device, e.g. the
aperture radius. We assumeu to be known at�, and in-
troduce dimensionless coordinatesr� = r=R; z� = z=R.
The potential problem foru is then given by (we drop the
stars for convenience):
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(4)

In order to have a unique solution to this problem, we have
to impose the additional conditions8><
>:

lim
z!�1

u(r; '; z) = C� <1; 0 � r � 1;

lim
jzj!1

uz(r; '; z) = 0; 0 � r � 1:
(5)

Here, C+ and C� are constants such that
limz!�1 u(r; '; z) = C�. For non-solenoidal fields (no
'-independent terms), we haveC� = 0. In practical cases,
the conditions (5) will always be satisfied.

2 FIELD DESCRIPTION

The general solution to (4) can be expanded into2m-pole
contributions [1]:

u =

1X
m=0

Jm(r
d

dz
)(Am(z) cos(m') +Bm(z) sin(m'));

while the associated vector potential~A is given by:

Ar =

1X
m=1

Jm+1(r
d

dz
)(Bm cos(m')�Am sin(m'));

A' =

1X
m=0

Jm+1(r
d

dz
)(Am cos(m') +Bm sin(m'));

Az =

1X
m=1

Jm(r
d

dz
)(�Bm cos(m') +Am sin(m')):

The functionsAm(z) andBm(z) are to be determined from
the boundary conditions atr = 1. Let Vm(z) andWm(z)
denote the Fourier coefficients ofU('; z), then

Jk(r
d

dz
)Am(z) =

Z 1

�1

gkm(r; z � �)Vm(�)d�: (6)

A similar result holds forJk(r d
dz
)Bm(z). The basic fun-

ciongkm(r; z) is given by

gkm(r; z) =
1

2�

Z 1

�1

Ik(!r)

Im(!)
ik�mei!zd!:

Any field-related quantity can be expressed in the same
manner as the potentials by differentiating or integrating
this basic function.
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3 FITTING THE MULTIPOLE FIELD

3.1 Boundary conditions known

In practice, we obtain approximations ofVm or its deriva-
tives by interpolating a discrete set of measurements by a
piecewise constant or linear function. First, assumeVm
is piecewise constant. Then there are pairs(�i; zi) withP

i �i = 0 such thatU 0

m =
P

i �i�(z � zi). Then, after
integration,

Jk(r
d

dz
)Am(z) =

X

i

�iG
k
m(r; z � zi); (7)

whereGk
m(r; z) =

R z
0
gkm(r; �)d�. If Vm is supposed

to be piecewise linear, thenU 00

m =
P

i �i�(z � zi), in
which case we need to replaceGk

m(r; z) by ~Gk
m(r; z) =R z

0
Gk
m(r; �)d�. As was shown above, related quantities

can easily be derived by replacing the functionsGm and
~Gm by functions related to these quantities, while retain-
ing the pairs(�i; zi).

The values for�i are obtained from measurements. For
example, assumeBz has been measured at the points
(1; 'j ; wi). The Fourier coefficients ofBz(1; '; z) areU 0

m

andW 0

m; these are obtained from the measurements using
Fourier series theory. Employing a piecewise constant ap-
proximation forU 0

m, we write�i = U 0

m(wi+1)�U 0

m(wi),
andam(r; z) =

P
i �i

~Gm(r; z�zi), wherezi = 1

2
(wi+1�

wi). Measurements of other components can be treated in
the same way.

It should be noted that, in order to determine the2m-
pole contribution, one needs measurements performed at
2m different angles'i.

The errors inam(r; z) are limited by those inVm:

sup
z2R

j�am(r; z)j � rm sup
z2R

j�Vm(z)j;

This justifies the use of the given approximations.

3.2 Boundary conditions unknown

Expressions for the potential can also be obtained in case
measurements were performed at points not on the sur-
face r = 1. Assume measurements ofu(r; '; z) were
taken at the points with scaled coordinates(rk ; 'i; wj),
k = 1; : : : ;M , i = 1; : : : ; P , j = 1; : : : ; N . In this case,
we are able to fit at mostM different multipole contribu-
tions simultaneously; in most cases, the2m-pole contribu-
tions corresponding tom = 1; : : : ;M , will be fitted. If
less thanM multipole coefficients are fitted, the remaining
data can be used to improve the statistics of the fit.

As an example, assume thatu contains dominant
normal-oriented quadrupole and sextupole contributions,
and that all higher order contributions are negligible:

u(r; '; z) = a2(r; z) cos(2') + a3(r; z) cos(3'):

The coefficientsa2 anda3 are then approximated by

a2(r; z;�)
:
=

NX

l=1

�lG2(r; z � zl);

a3(r; z;�)
:
=

NX

l=1

�lG3(r; z � zl);

wherezl = 1

2
(wl+wl+1). This corresponds to a piecewise

constant approximation of the multipole coefficients ofu at
r = 1. We denote the measured value ofu at (rk ; 'i; wj)
by fkij , and define the quantityM(�; �) by:

M(�; �) =

MX

k=1

PX

i=1

NX

l=1

(fkij � u(rk; 'i; wj))
2:

The optimal values for�; � are then obtained by minimiz-
ing M(�; �) under the conditions

P
l �l =

P
l �l = 0.

Again, knowledge of the values for�; � completely deter-
mines the corresponding multipole contribution.

There are a few remarks to be made concerning this ex-
ample:

� Measurements at at least two different angles are
needed to fit both normal and skew multipole contri-
butions.

� A surplus of angles and/or radii can be used to im-
prove on statistics.

� Thewi-values at which signal is dominant over noise
should be used to defineM(�; �); the remainingwi-
values only serve to improve on statistics.

� Further improvement on the statistics can be obtained
by using a weighted average for the sum of squares in
the definition ofM(�; �).

It should also be noted that the former method yields
better results for individual multipole contributions, while
the latter yields a better approximation of the total field,
distributing higher order multipole contributions among the
lower order multipole coefficients.

4 TRANSFER FUNCTIONS

4.1 Numerical calculation

Having obtained a complete field description in terms of
field measurements, we show how to obtain the transfer
function from numerical integration of the equations of mo-
tion. The system of Hamiltonian equations of motion for a
charged particle in the field can be written in the following
form:

(q0; p0)(z) = f(q; p; ~A(z; q);
@ ~A

@~x
(z; q)): (8)

Here,q = (r; '; t), p = (pr; p'; pz), and~x = (r; '; z).
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As derived in the previous section, the components of~A

and their partial derivatives all take the form as in (7).
The system (8) will be solved by means of a finite differ-

ence method. The discrete version of (8) reads:

(q; p)(wi+1) =(q; p)(wi�1) + (wi+1 � wi�1)�

�f(q(wi); p(wi); ~A(wi; q(wi));
@ ~A

@~x
(wi; q(wi))):

(9)

We apply the initial condition(q; p)(w0) = (q
0
; p

0
), and

calculate(q; p)(w1) from

(q; p)(w1) =(q; p)(w0) + (w1 � w0)�

� f(q
0
; p

0
; ~A(w0; q0);

@ ~A

@~x
(w0; q0)):

We then find(q
f
; p

f
) by repeated application of (9), de-

scribed in terms of(q0; p0) and the field measurements.
By varying(q0; p0), we can calculate the complete transfer
function of the device, directly in terms of these measure-
ments.

Since the steps of this finite difference method are lo-
cated precisely at the pointsz = wi, where the field mea-
surements were performed, we find that there are no inter-
polation errors in the values for~A used in the calculations.
By optimizing the interpolation of the boundary values at
r = 1, such that not only the boundary values, but also their
z-derivatives are matched at the pointsz = wi, we can also
remove interpolation errors from the values of the partial
derivatives of~A for better results.

Note that for the numerical scheme, we need a best pos-
sible overall approximation of the magnetic vector poten-
tial, so the least squares method is preferred over direct in-
tegration of the boundary values in this case.

4.2 Analytical results

In the past, aberration coefficients for the transfer func-
tions of many magneto-optical devices have been derived
analytically. (See Smith [2], Lee-Whiting [3], Matsuda &
Wollnik [4], Nakabushi & Matsuo [5].) Often, these coeffi-
cients are expressed in the on-axisr-derivatives of the field
of such devices. The methods presented here can be used
to obtain these gradients directly from field measurements
away from thez-axis.

By expanding the functionsgm into powers ofr, one
can expand the coefficientsam andbm into powers ofr.
For example:

am(r; z) =

1X
l=0

�ml(z)r
m+2l;

�ml(z) =

Z z

�1

gml(z � �)Vm(�);

gml(z) =
1

4ll!(m+ l)!�

Z
1

0

!m+2l

Im(!)
cos(!z)d!:

The z-dependent coefficients of these power series and
their derivatives are used in the expressions for the aberra-

tion coefficients. The aberration coefficients for a normal-
oriented magnetic quadrupole, for example, are all ex-
pressed in terms of the quantityk2(z) and its derivatives,
which are, for a particle with chargeq and momentump0,
given by

(k22)
(l)(z) =

q

p0
4ll!(l + 2)!�2;l(z):

From this, we find that we can avoid measuring the on-
axisr-derivatives of the magnetic field, and obtaink2, and
thus the aberration coefficients, directly from measuring
the magnetic field away from thez-axis, which is easier.
The same holds for the aberration coefficients correspond-
ing to higher order multipole contributions.

Note that, in order to calculate the various aberration co-
efficients properly, we need a best possible approximation
of the individual multipole coefficients, so direct integra-
tion of the boundary values is the preferred method to ob-
tain them.

5 CONCLUSIONS

The magnetic field inside a magnetic multipole, and its har-
monic scalar and vector potentials, have been explored in
the area0 � r < 1 and�1 < z <1. The various multi-
pole contributions to these quantities have been fitted using
field measurements at the boundaryr = 1 and shifted ba-
sic functions. An alternative least-squares method has been
developed for measurements not at the boundary. The same
set of measurements and shiftings can be used to fit many
field-related quantities.

The developed procedure is independent of the exact
form of the boundary conditions and can be used to fit the
field of one device or various consecutive devices.

The procedure works for any order multipole contribu-
tion, but will be most useful for lower order multipole con-
tributions, since higher order multipole contributions are
more difficult to obtain from measurements and their effect
on particle trajectories will often be small.

A numerical method for calculating the transfer func-
tions from the field description has been derived. The field
description has also been applied to existing analytical re-
sults. The least squares method is preferred in the first, di-
rect integration of the boundary values in the second case.
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